
PoR Implementation
Security Assessment

Gate.io

January 3, 2024



Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Repositories: https://github.com/gateio/proof-of-reserves

Commit: ea647e23bad94e6417df3f05277c6caa8959d0f4

Auditors: Luciano Ciattaglia
Sofiane Akermoun
Nino Lipartiia
Bartosz Barwikowski

References: ● Customer’s Website
● https://www.gate.io/proof-of-reserves/
● https://www.gate.io/learn/articles/gate-io-proof-of-

reserve-upgrade/855
● https://www.gate.io/article/33123

Goal and Objectives of Engagement

Hacken team analyzes the documentation, repository codebase, code and

architecture quality, new releases tags functionalities and performs necessary

checks against known vulnerabilities.

The assessment's goal is to determine whether the code is vulnerable to known

attacks or malicious code and to ensure that there are no issues, build,

deployment, or architecture flaws.

Hacken blockchain protocol and security analysis methodology

https://github.com/gateio/proof-of-reserves
https://gate.io
https://www.gate.io/proof-of-reserves/
https://www.gate.io/learn/articles/gate-io-proof-of-reserve-upgrade/855
https://www.gate.io/learn/articles/gate-io-proof-of-reserve-upgrade/855
https://www.gate.io/article/33123
https://hackenio.cc/blockchain_methodology


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Project Summary

This project is a derivative of the "zkmerkle-proof-of-solvency," retaining much
of the original logic but introducing significant structural modifications in file
organization and naming conventions.

Key aspects of the project include:

1. Dependency Management: The project relies on 1,157 dependencies,
each verified through checksum validation. A comprehensive security
audit revealed 42 vulnerabilities across these dependencies, with 16
posing risks due to publicly available exploits. The severity of these
vulnerabilities is categorized as 22 high-impact and 20 medium-impact.

2. Cryptographic Frameworks and Structures:
○ The project utilizes an outdated fork of GNARK (version 0.7.0� to

construct cryptographic circuits.
○ For hashing user data and the Sparse Merkle Tree �SMT� structure,

it employs the Poseidon hash function with the BN254 curve.
○ The SMT, crucial for storing hashes, is implemented using the

BSMT library. The tree's maximum depth is set at 28, enabling the
Proof Of Solvency system to accommodate over 250 million users.

3. Code Quality and Documentation:
○ The code is well-organized and concise, with minimal commented

lines, enhancing readability and maintainability.
○ Despite its clean structure, the project currently has 0% test

coverage, highlighting a potential area for improvement in terms of
code reliability.

○ The README.md file provides detailed instructions for tool setup
and operation, although it lacks insight into the motivations behind
the chosen computational circuits for user batch commitments.

https://github.com/binance/zkmerkle-proof-of-solvency/tree/main
https://www.poseidon-hash.info/
http://github.com/gatechain/gate-zk-smt


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

4. Error Handling: The project employs the Panic strategy for main function
error handling. This approach leads to tool crashes accompanied by a
stack trace whenever an error occurs, which can be useful for debugging
but may affect robustness in production environments.

5. Testing and Sample Data: For manual testing, sample user data, including
balance sheets, is provided. This aids in evaluating the tools in a
controlled environment with real-world data scenarios.

Overall, the project stands as a testament to a strong foundation in
cryptographic implementation and exceptional code organization. Its current
state reflects a well-considered balance between functionality and complexity,
offering a comprehensive setup for users with its detailed documentation and
provided sample data. The project's existing framework and features already
contribute significantly to the field, demonstrating a clear understanding and
application of key principles in blockchain technology and cryptographic
systems.

https://gobyexample.com/panic


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

Findings

[Critical]
No critical severity issues were found

[High]
No high severity issues were found

[Medium]
No medium severity issues were found

[Low]
No low severity issues were found

[Informational] Merkle Root hash integrity

When users download the Merkle tree and each user config from the frontend,

the Merkle root hash is included in the user_config.json file, but there is no way

to check the integrity of this hash across all Gate.io users in order to be sure

that this root hash wasn’t tampered depending on the client IP or other

parameters of the users.

To counteract this, the Merkle root should be signed by a trusted third-party

auditor or be published on the blockchain as a public bulletin board, so users

can easily verify the transaction's inclusion and the validity of the Merkle root

hash they got from their user_config.json. It should be done in a single

transaction, which will be easy to detect. It’s also possible to address this issues

by publishing the hash root in a social media that the proved doesn’t control.



Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

[Informational] Vulnerable and Outdated gnark Dependency

The current implementation of the ZKP system relies on an outdated version of

the gnark library, specifically version v0.7.1. This poses potential security risks

and efficiency drawbacks, as the latest version of gnark, v0.9.1, includes several

critical security fixes and performance improvements.

It is strongly recommended to update gnark to the latest version, v0.9.1.

Considering that gnark uses semantic versioning, updating from v0.7.1 to v0.9.1

should not introduce breaking changes, making the update process smoother.

This upgrade will ensure that we leverage the latest security patches and

performance improvements.

For a detailed list of changes, including security fixes and efficiency

enhancements in the newer version, please consult the release notes available

at: gnark Releases on GitHub.

https://github.com/Consensys/gnark/releases


Hacken OU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eesti
Kesklinna, Estonia

[Informational] Vulnerabilities in dependencies

● Improper Signature Verification affecting golang.org/x/crypto/ssh package
● Denial of Service �DoS� affecting golang.org/x/net/html package
● NULL Pointer Dereference affecting golang.org/x/net/html package
● Authorization Bypass Through User-Controlled Key affecting

github.com/emicklei/go-restful/v3 package
● Authorization Bypass affecting github.com/emicklei/go-restful/v3

package
● Improper Input Validation affecting

github.com/ethereum/go-ethereum/core package
● Insecure Randomness affecting github.com/satori/go.uuid package

Upon thorough examination of each exploit associated with the identified

vulnerabilities, it was determined that none of the vulnerable functions are

actively utilized in the current scope of the project. However, it is advisable to

update these dependencies as a proactive measure to entirely mitigate any

potential risks they might pose in the future.

https://www.cve.org/CVERecord?id=CVE-2020-9283
https://www.cve.org/CVERecord?id=CVE-2018-17848
https://www.cve.org/CVERecord?id=CVE-2018-17142
https://www.cve.org/CVERecord?id=CVE-2022-1996
https://www.cve.org/CVERecord?id=CVE-2022-1996
https://security.snyk.io/vuln/SNYK-GOLANG-GITHUBCOMEMICKLEIGORESTFULV3-2435654
https://security.snyk.io/vuln/SNYK-GOLANG-GITHUBCOMEMICKLEIGORESTFULV3-2435654
https://www.cve.org/CVERecord?id=CVE-2022-37450
https://www.cve.org/CVERecord?id=CVE-2022-37450
https://www.cve.org/CVERecord?id=CVE-2021-3538

